SPEECH SOUND PRODUCTION: RECOGNITION USING

RECURRENT NEURAL NETWORKS

By: Eric Nutt

December 18, 2003

	Contents

	Discussion and Research
	Pages 2-7

	Network Training Results
	Appendix A

	Important Formulae
	Appendix B

	pVector – Feature Extraction Software
	Appendix C

	Network Testing Code
	Appendix D

	References
	Appendix E

Abstract

In this paper I present a study of speech sound production and methods for speech recognition systems. One method for important speech sound feature extraction along with a possible full scale recognition system implementation using recurrent neural networks is presented. Neural network testing results are examined and suggestions for further research and testing are given at the end of this paper.

Speech Mechanisms

Human speech is produced by complex interactions between the diaphragm, lungs, throat, mouth and nasal cavity. The processes which control speech production are phonation, resonation and articulation. Phonation is the process of converting air pressure into sound via the vocal folds, or vocal cords as they are commonly called. Resonation is the process by which certain frequencies are emphasized by resonances in the vocal tract, and articulation is the process of changing the vocal tract resonances to produce distinguishable sounds. Air is forced up from the lungs by the diaphragm then passes through the vocal folds at the base of the larynx. If the vocal folds are used to produce sound then that sound is said to be voiced. The vocal tract acts as a cavity resonator forming regions where the sounds produced are filtered. Each resonant region in the spectrum of a speech sound usually contains one peak. These peaks are referred to as the formants.

[image: image1.png]—S|—

- =

Helmholtz Resonator

[image: image2.png]11812

W= migr

Electrical Analog

The Helmholtz Resonator is an example of a cavity resonator which acts as a lumped acoustic system. The figure on the left is the mechanical resonator with the volume V, the neck length L, and the neck area S. The electrical analog of the Helmholtz Resonator is given as the figure on the right. The resonant frequency (
[image: image3.wmf]0

w

) is given by the condition that the reactance of the system goes to zero:

[image: image4.wmf]2

1

0

)

'

(

V

L

S

c

=

w

Where c is the sound velocity in the medium under consideration and
[image: image5.wmf]'

L

 is the effective length of the neck which depends on the shape of the opening. The equations for the electrical analog further depend on the radiation resistance (Rr), and the effective stiffness (s) which are given in Appendix B [2].

Phonology
	Fricatives
	Stops/Plosives
	Affricates

	[f], fie
	[p], pie
	[č], chalk

	[v], vie
	[b], buy
	[jˇ], gin

	[θ], thigh
	[m], my
	

	[ð], thy
	[t], tie
	

	[s], sky
	[d], dog
	

	[š], shy
	[n], now
	

	[ž], zoo
	[k], kite
	

	
	[g], girl
	

	
	[ŋ], king
	

Phonology is the study of the smallest distinguishable speech sounds that humans produce. Phonology can be used to break the speech sounds into groups based on how the sound is produced in the vocal tract. The simplest group of speech sounds, or phonemes, is vowels. Vowel sounds are a group of sounds produced using voicing (vibrations of the vocal folds) and unrestricted air flow. Vowel sounds can be distinguished by the first three formants of the vowel spectra which are attributed respectively to the following articulators: lip opening, shape of the body of the tongue, and the location of the tip of the tongue [4]. Other phonemes are produced by more complex interactions in the vocal tract involving air flow restrictions (consonant phonemes). Stops, or plosives, are an example of more complex phonemes. These phonemes are produced by completely restricting air flow and then releasing the air to make some sound. Examples of stops are /b/ as in boy, /t/ as in tall, /m/ as in make and /n/ as in now.

One method used to distinguish consonant phonemes is to examine the manner of articulation. This method breaks consonant phonemes into groups based on the location and shape of vocal tract articulators. The main consonant groups by manner of articulation are: fricatives, stops or plosives, and affricates. Some of these consonants from American English are given above in square brackets along with an example where the bold-faced letter/letters represent the phoneme. Looking at the waveform and spectrum plots below for /v/ and /s/ one can readily see the difference between each. One of the main causes of difference between these two phonemes is that /v/ is voiced and /s/ is not. The voicing of /v/, which is a result of vocal fold vibrations, is what causes its periodicity. Since /s/ is produced without using the vocal folds it does not have a periodic structure.

[image: image6.png]waveform Plot

| [

Spectrum Plot

Waveform and Spectrum of /s/

[image: image7.png]waveform Plot

“

Spectrum Plot

LT

Waveform and Spectrum of /v/

Below are examples of the phonemes /a/ and /o/. By examining these waveforms and spectrums one can easily see that both appear periodic. This is because all vowels are voiced, just like the consonant phoneme /v/ above. The formants are also apparent in the spectrum (which I have pointed out for clarity).

[image: image8.png]l S

7 Formants 1,2 and 3

oot |

Waveform and Spectrum of /a/
[image: image9.png]Waveform Plot

d I I
Spectrum Plot

e Formants 1,2 and 3

o

Waveform and Spectrum of /I/

Speech Recognition Introduction

There are several viable methods currently used for speech recognition including template matching, acoustic-phonetic recognition and stochastic processing. In order to examine the methods used to produce speech sounds I have chosen to try and implement an acoustic-phonetic recognition process. Acoustic-phonetic recognition is based on distinguishing the phonemes of a language. First, the speech is analyzed and a set of phoneme hypotheses are made. These hypotheses correspond to the closest recognized phonemes in the order that they are introduced to the system. Next, the phoneme hypotheses are compared against stored words and the word that best matches the hypothesis is picked [1].

One of the most important aspects of this type of speech recognition is the phoneme feature extraction. Feature extraction is the method of retrieving information that distinguishes each phoneme. For this project I have developed a software program called pVector which can be used to extract phoneme vectors (the features used to distinguish phonemes) from a wave file and store them in a convenient manner. Documentation for pVector is included in Appendix C at the end of this report and the methods employed by pVector are discussed below in the section labeled Feature Extraction.

After the feature vectors are extracted a method must be implemented which can take a feature vector as input and decide which phoneme this feature vector corresponds, or does not correspond, to. One common method for implementing this recognition is based on time-delay neural networks. A discussion of the methods implemented and the results obtained are located below in the section labeled Neural Network Recognition.
Feature Extraction
[image: image26.png]*

oupt

One Expert Hetwork

The raw data used in this experiment comes from voice files (.wav files) recorded at a sampling frequency of 20 kHz. This frequency was chosen because speech sounds typically do not surpass 10 kHz and in order to retain all of the information of the speech it was sampled at twice the highest frequency (the Nyquist Frequency). One common method for extracting the important information from a sound file is by computing the Mel-Frequency Cepstral Coefficients (MFCCs).

The method implemented for computing the MFCCs of a waveform that follows is based upon research done by S. Molou, et al [5]. First, it is assumed that each phone is short-time periodic and therefore a Hamming Window is used to smoothly transition the waveform to 0 at both ends of the current phone. Next, the waveform is broken into a group of overlapping frames and the 256 point Fast Fourier Transform is taken of each frame to retrieve the spectrum information. The phase information is thrown out because studies have shown that perception depends nearly completely on the magnitude of the spectrum. Then, the logarithm of the FFT is taken because humans have been shown to perceive loudness on an approximately log scale. It has been shown that lower frequencies of a spectrum are more important than higher frequencies following the Mel-Frequency scale. Therefore, each spectrum is filtered using a Mel-Frequency Filter Bank in order to emphasize the important frequencies of the spectrum. In order to reduce the amount of data at this point the frames are averaged over time according to program options. The final step is to take the Discrete Cosine Transform of each spectrum to obtain the Mel-Frequency Cepstral Coefficients. Only the first 15 or so coefficients (depending on program options) are kept as a result of the DCT storing nearly all of the signal energy in this part of the cepstrum.

[image: image27.png]

Mel-Filterbank

At right is an example of a Mel Filterbank produced by melFilterBank.m (source code in Appendix C). The triangular peaks are spaced based on the Mel-Frequency Scale:

[image: image10.wmf])

700

1

lg(

2595

Hz

f

f

mel

+

*

=

To accomplish this task uniformly spaced peaks are calculated in the Mel-Frequency scale and then converted to the spectrum scale to get the Mel-spaced peaks. Each triangle in the plot below corresponds to one filter which is multiplied by the corresponding spectrum values. The values are then summed for each filter and the spectrum is reduced from 256 points to the number of filters used. This results in a Mel warped spectrum which enhances perceptually significant frequencies.

Neural Network Recognition
[image: image28.png]Magnitude Spectrum Scale Factor

08

08

04

02

Mel Filterbank

100

180
Spectru index

200

250

300

Neural Networks lend themselves very well to pattern classification as a result of the ability to train them to recognize patterns. In order for a neural network to learn the patterns associated with phoneme vectors it must have memory. Memory is the property that a system’s output depends not only on the current input into the system but also depends on past inputs into the system. To accomplish this task a recurrent network must be used. An example of a recurrent network is located to the right. The important thing to note here is that the hidden layer neurons’ outputs are weighted and reintroduced to the hidden layer neurons’ inputs. This causes current hidden layer outputs to depend on past hidden layer outputs thus giving the network memory. One common type of recurrent neural network is the Elman Network. An Elman network has the output from each hidden layer neuron routed to the inputs of all hidden layer neurons [3]. These networks can be trained using a slightly modified version of the backpropagation algorithm.

The generalized expert that was implemented for this project is one that has 15 inputs corresponding to the Mel-Frequency Cepstral Coefficients at 1 time step of a waveform (or 1 column of a phone vector). Several network structures were tested (see Network Training Methods and Results section) but all of them had at least 1 hidden layer, and 1 output layer with 1 neuron. All of the neurons had Tan-sigmoid activation functions. For this project MATLAB’s traingdx function was used to implement a gradient descent backpropagation algorithm with adaptive learning rate and momentum.

[image: image29.png]Fle Edt Data

‘Waveform Plot

[} [

o

Spectrum Plot

=lalx]|

BE

A possible full scale system implementation for speech recognition is given at right. This system involves a mixture of experts system with no gating network. Each expert could be trained to recognize a particular phoneme. At each time t, the outputs from all of the experts are taken and the most likely phonemes are recorded to produce a phoneme hypothesis. This hypothesis is processed stochastically to find the closest matching word which is then output. This process is very complicated and there was not sufficient time to implement much of this system. However, a basic phoneme expert was created and tested to discover training methods and parameters that allowed the network to learn representations of the phoneme /s/. The method and results are listed in the next section.

Network Training Methods and Results
In order to figure out the network structure (number of layers, number of neurons in each layer, and network training parameters) that works the best several network structures were tried. In all 5 different structures were tested. For each network structure 4 different sets of training parameters were tried. For each set of training parameters the network was trained against 20 random order samples and tested against 5 separate random order samples. 5 training/testing trials were run and the results (mean-squared error, training mis-classification rate, and testing mis-classification rate) were averaged over all the trials. The average results for each network structure are given below. The complete results can be found in Appendix A.

	Network Structure
	Mean-Squared Training Error
	Training
Error (%)
	Testing
Error (%)
	Mis-Classification Error
(Training-Testing)

	[8,4,1]
	0.1948
	37
	88
	7.4/20 - 4.4/5

	[16,4,1]
	0.1617
	19
	90
	3.8/20 - 4.5/5

	[16,8,1]
	0.5815
	22
	80
	4.4/20 - 4.0/5

	[15,1]
	0.2356
	46
	88
	9.1/20 - 4.4/5

	[30,1]
	0.4561
	51
	90
	10.1/20 - 4.5/5

Conclusion

From the results above one can see that the network that learned the /s/ phoneme structure the best is the network with 16 neurons in hidden layer 1, 8 neurons in hidden layer 2 and 1 output neuron. Although the training error for this network was slightly higher than the training error for the network with the [16,4,1] structure, the testing error was significantly lower for the [16,8,1] network structure. Examining the testing error results leads to the conclusion that a much larger set of training data and much longer training times must be used in order for any of these networks to be viable for speech recognition. However, from the training results one can see that the networks all learned to recognize the /s/ phoneme to some degree. The 3 layer networks all learned, on average, better than the 2 layer networks. I believe it would be interesting to test these same structures with more than 1 recurrent connection for each layer as this would allow the networks to look back further in time and possibly develop better abstractions.
Appendix A – Network Training/Testing Results

Training Info:

Each test consists of testing the network structure (hidden layer1, (hidden layer2), output layer) using the training parameters defined for each test. Five trials were run for each test and the results were averaged and are given for each test in figure 1. The average results for each network are also given in figure 2.

Figure 1
	Test
	Network Structure
	Learning
Rate
	Momentum
Constant
	MSE Averaged
Over 5 Trials
	Training
Error (%)
	Testing
Error (%)
	Mis-Classification Error
(Training-Testing)

	1
	[8,4,1]
	0.0010
	0.9
	0.1543000
	33.0
	88
	6.6/20 - 4.4/5

	2
	[8,4,1]
	0.0010
	0.2
	0.1021000
	41.0
	88
	8.2/20 - 4.4/5

	3
	[8,4,1]
	0.0001
	0.9
	0.4016000
	27.0
	84
	5.4/20 - 4.2/5

	4
	[8,4,1]
	0.0001
	0.2
	0.1211000
	46.0
	92
	9.2/20 - 4.6/5

	5
	[16,4,1]
	0.0010
	0.9
	0.0516000
	16.0
	84
	3.2/20 - 4.2/5

	6
	[16,4,1]
	0.0010
	0.2
	0.0684000
	20.0
	92
	4.0/20 - 4.6/5

	7
	[16,4,1]
	0.0001
	0.9
	0.1406000
	15.0
	88
	3.0/20 - 4.4/5

	8
	[16,4,1]
	0.0001
	0.2
	0.3863000
	25.0
	92
	5.0/20 - 4.6/5

	9
	[16,8,1]
	0.0010
	0.9
	0.2971000
	21.0
	76
	4.2/20 - 3.8/5

	10
	[16,8,1]
	0.0010
	0.2
	0.4172000
	15.0
	80
	3.0/20 - 4.0/5

	11
	[16,8,1]
	0.0001
	0.9
	0.6406000
	29.0
	72
	5.8/20 - 3.6/5

	12
	[16,8,1]
	0.0001
	0.2
	0.9710000
	22.0
	88
	4.4/20 - 4.4/5

	13
	[15, 1]
	0.0010
	0.9
	0.2287000
	43.0
	88
	8.6/20 - 4.4/5

	14
	[15, 1]
	0.0010
	0.2
	0.1781000
	48.0
	88
	9.6/20 - 4.4/5

	15
	[15, 1]
	0.0001
	0.9
	0.1260000
	50.0
	84
	10/20 - 4.2/5

	16
	[15, 1]
	0.0001
	0.2
	0.4095000
	40.0
	88
	8.0/20 - 4.4/5

	17
	[30, 1]
	0.0010
	0.9
	0.2363000
	58.0
	84
	11.6/20 - 4.2/5

	18
	[30, 1]
	0.0010
	0.2
	0.7382000
	27.0
	88
	5.4/20 - 4.4/5

	19
	[30, 1]
	0.0001
	0.9
	0.6874000
	58.0
	92
	11.6/20 - 4.6/5

	20
	[30, 1]
	0.0001
	0.2
	0.1626000
	58.0
	96
	11.6/20 - 4.8/5

Figure 2
	Network Structure
	MSE
	Training
Error (%)
	Testing
Error (%)
	Mis-Classification Error
(Training-Testing)

	[8,4,1]
	0.1948
	37.0
	88
	7.4/20 - 4.4/5

	[16,4,1]
	0.1617
	19.0
	90
	3.8/20 - 4.5/5

	[16,8,1]
	0.5815
	22.0
	80
	4.4/20 - 4.0/5

	[15,1]
	0.2356
	45.5
	88
	9.1/20 - 4.4/5

	[30,1]
	0.4561
	50.5
	90
	10.1/20 - 4.5/5

Appendix B – Important Formulae

Helmholtz Resonator

Radiation Resistance:

[image: image11.wmf]x

S

ck

R

r

2

2

0

r

=

[image: image12.wmf]î

í

ì

=

opening

unflanged

opening

flanged

x

,

4

,

2

p

p

Stiffness:

[image: image13.wmf]V

S

c

s

2

2

0

r

=

pVector – Signal Processing
Hamming Window:

[image: image14.wmf]ï

î

ï

í

ì

<

£

-

-

=

otherwise

N

n

N

n

w

m

,

0

0

),

1

2

cos(

46

.

0

54

.

0

p

Mel-Frequency:

[image: image15.wmf])

700

1

lg(

2595

Hz

f

f

mel

+

*

=

Fast Fourier Transform:

[image: image16.wmf]N

i

N

N

j

k

j

N

e

j

x

k

X

)

2

(

1

)

1

)(

1

(

)

(

)

(

p

w

w

-

=

-

-

=

=

å

Discrete Cosine Transform:

[image: image17.wmf]ï

ï

î

ï

ï

í

ì

£

£

=

=

=

-

-

=

å

=

N

k

N

k

N

k

w

N

k

N

k

n

n

x

k

w

k

y

N

n

2

,

2

1

,

1

)

(

,...,

1

,

2

)

1

)(

1

2

(

cos

)

(

)

(

)

(

1

p

Neural Network
Neural Network Weight Update Formula:

[image: image18.wmf]dX

dperf

mc

lr

dXprev

mc

dX

*

*

*

+

=

mc = momentum constant

dXprev = previous weight change

lr = learning rate

perf = network performance (mean-squared error measurement)

tansig Activation Function:

[image: image19.wmf]1

)

1

(

2

)

(

*

2

-

+

=

-

n

e

N

TANSIG

* This is mathematically equivalent to tanh(N)

Appendix C – pVector – Phone Vector Capture Program

pVector File Listing (Required Files – All files written by Eric Nutt, December 2003)
mfcc.m – Computes Mel-Frequency Cepstral Coefficients of a single spectrum
pVecData.m – Controls operation of the Manage Data dialogue box

pVecData_loadVarInfo.m – Load variable information from a file into a list box

pVecData_showSelectedData.m – Displays variable information as an image

pVecOptions.m – Controls operation of the Options dialogue box.

pVector.m – Controls operation of the main pVector program screen.

pVector_drawWavePlot.m – Plots the wave file waveform and spectrum.

pVector_getPhoneVec.m – Retrieves the phone vector from the waveform.

pVector_initialize.m – Initializes the pVector program.

pVector_saveOptionsData.m – Saves options data to the ‘pVecOptions.mat’ file.

pVector_setSliderValues.m – Sets the waveform slider values

savePVector.m – Controls operation of the Phone Vector Save dialogue box.

pVecData.fig – The GUI information for the Manage Data dialogue box.

pVecOptions.fig – The GUI information for the Options dialogue box.

pVector.fig – The GUI information for the main pVector program screen.

savePVector.fig – The GUI information for the Phone Vector Save dialogue box.

melFilter40x256.mat – The default Mel Filter Bank data.

pVecOptions.mat – The options for the pVector program.

pVecSavedData.mat – Default save file for Phone Vector data.

bmp_getPhoneVec.bmp – Button Graphic File

bmp_options.bmp – Options Graphic File

pVector Menu Listing
File

 (Open Wave File: Open a new wave file for analysis.

 (Get Phone Vector (<CTRL>+G): Calculate the phone vector between the cursors.

 (pVector Options (<CTRL>+O): Open the pVector options dialogue box.

 (Play All: Play the entire wave file that is currently loaded.

 (Play Window (<CTRL>+W): Play what is visible of the wave file currently loaded.

 (Play Phone (<CTRL>+P): Play the sound between the cursors.

 (Exit (<CTRL>+X): Exit the pVector Program.

Edit

 (Copy Figure: Copy the figure to clipboard.

Data

 (Manage Data (<CTRL>+M): Open the Manage Data dialogue box.

Main pVector Screen

[image: image30.png]=lalx]|

File Name:

PVecSavedDatamat

Variable Name:

—

swedsa| O

40

Phone Vector:

10

15

[image: image31.png]-) p¥ecOptions

Phoneme Vector Options

Length (Number of waveform ssmples in sach phore vector}
00 =30ms @20KHz

#MFCC's (Number of cepstal coeffecients o keep):

=
o

Default Save Fie:

PVecSavedDatamal

Time dimensian size (Number oftine-dependent samples for each phone vectar)

Close.

o
CE=]

[image: image32.png]=l

Manage Data

4 LoadData
410 | Bt ||

11
12
&2 SaveData
&3 —
i

&

& Append Data
@7 =
&

kg

i Remove

iz E—
K1
k2

s Dore.

Dats (image ortex):

[image: image20]
1. Waveform Plot: Plot of sound file waveform.

2. Cursors: Green is the current cursor, Yellow Dashed is the ending sample of the phone.

3. Slider, Zoom In and Zoom Out Buttons: Use these for waveform navigation.

4. Get Phone Vector Button: Gets the phone vector in the region between cursors.

5. pVector Options Button: Opens a dialogue box with common pVector options.

6. Spectrum Plot: Plot of the power spectrum of the waveform taken between cursors.

Phone Vector Save Screen

[image: image21]
1. Spectrogram Plot: Spectrogram obtained between cursors in main screen.

2. Phone Vector Plot: Image representation of the phone vector calculated from the spectrogram.

3. File Name Edit Box: File name to save phone vector data to.

4. Variable Name Edit Box: Variable name to save phone vector as.

5. Close Button: Close this screen without saving.

6. Save Data Button: Save the phone vector using the file and variable names.

7. Data List Box: List of data already in current save file.

pVector Options Screen

[image: image22]
1. Length Edit Box: The number of waveform samples used to calculate a phone vector can be specified here. The corresponding waveform time shows immediately to the right of this box.

2. Time Dimension Size Edit Box: The final size of the phone vector’s time dimension can be specified here. The reduction in size here is done by a time average.

3. Default Save File Edit Box: The default save file can be entered here.

4. MFCC Dimension Size Edit Box: The number of Mel-Frequency Cepstral Coeffiecients to keep. This number corresponds to the number of rows in the phone vector matrix.

5. OK Button: Clicking this button saves the values in the edit boxes to the file ‘pVecOptions.mat’.

6. Close Button: Clicking this button closes this dialogue box but does not save the values entered.

pVector Manage Data Screen

[image: image23]
1. Data List Box: List of loaded data.

2. Phone Vector Plot: Preview phone vector data as an image, or display text/value of other variables here.

3. Load Data Button: Click here to load data from a file. This method replaces the current data.

4. Save Data Button: Click here to save the data in the Data List Box to a file.

5. Append Data Button: Click here to append new data from a file into the Data List Box.

6. Remove Button: Click here to remove a variable from the Data List Box.

7. Done Button: Click here to close this dialogue box and return to the pVector main screen.

pVector Critical Matlab Code

[image: image24]

[image: image25]
Appendix D – Network Testing Source Code (Matlab)
This code is located in the file elmnettest.m:

% Eric Nutt

% Phoneme Recognition Project

% December 2003

% Purpose: Create and test an elman network

% Inputs: structure - the network structure to use - a 1 by m matrix with m

% layers. Each value is the number of neurons in that

% layer

% learnrate - the initial learning rate

% momentumc - the momentum constant

% nTrials - the number of trials to run

% Outputs: aveMSE - the average mean-squared error after training is done

% aveTrainErr - the average number of mis-classifications - after

% training has been completed - using the training

% data

% aveTestErr - the average number of mis-classifications - after

% training has been completed - using the testing

% data

function [aveMSE, aveTrainErr, aveTestErr] = elmnettest(structure,learnrate,momentumc,nTrials)

% ----------- Create an Elman Back Propagation Network -----------

% * 15 inputs scaled between [-1,1]

% * Network structure given by 'structure'

% * all layers' activation functions are tansig

net = newelm(repmat([-1 1],15,1),structure,{'tansig','tansig','tansig'},'traingdx');

% ----------- Initialize the weights in the net to random values -----------

net.layers{[1 2]}.initFcn = 'initwb';

net.inputWeights{1}.initFcn = 'rands';

net.layerWeights{[1 2; 1 1;]}.initFcn = 'rands';

net.biases{[1 2; 1 1;]}.initFcn = 'rands';

% ----------- Setup training parameters -----------

net.trainParam.epochs = 3000; % Set the number of epochs

net.trainParam.goal = 0; % Set the training goal

net.trainParam.min_grad = eps;

net.trainParam.mc = momentumc; % Set the momentum constant

net.trainParam.lr = learnrate; % Set the learning rate

net.trainParam.lr_inc = 1.2; % Factor to increase lr by

net.trainParam.lr_dec = 0.7; % Factor to decrease lr by

% ----------- Load and setup training/target/test data -----------

% Correct match target pattern

Tg = [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1];

% Incorrect match target pattern - Not used in this experiment

Tb = [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1];

data = load('pVecSavedData.mat');

for j=1:nTrials

 % Initialize the network weights

 net = init(net);

 nTrainSamples = 20; % Number of training samples to use

 trainIndex = randperm(nTrainSamples); % Randomly order training samples

 % Set up the training data as a sequence

 % Also scale the data so it is in the range [-1,1]

 Ptrain = [];

 for k=trainIndex

 Ptrain = [Ptrain premnmx(data.(strcat('s',num2str(k))))];

 end

 Ptrain = {Ptrain};

 % Set up the sequence of target values

 Ttrain = [repmat(Tg,1,nTrainSamples)];

 Ttrain = {Ttrain};

 % Train the network

 [net,tr,Y,e,pf,af] = train(net,Ptrain,Ttrain);

 mserr(j) = mse(e); % Get the Mean Squared Training Error

 % ----------- Do some tests -----------

 out = []; % Network output variable

 Ttest = Tg; % Same target values

 trainmissed(j) = 0;

 for i = 1:20

 Ptest = {premnmx(data.(strcat('s',num2str(i))))}; % the phone to test

 a = seq2con(sim(net,Ptest)); % get the network output

 out = [out; a];

 testing = sum(round(cell2mat(a)) - Ttest); % Compare output to target

 if testing>0 | testing<0

 % If output and target are different - network mis-classified

 % the data

 trainmissed(j) = trainmissed(j) + 1;

 end

 end

 % same as tests above - but this is the testing data

 testmissed(j) = 0;

 for i = 21:25

 Ptest = {premnmx(data.(strcat('s',num2str(i))))};

 a = seq2con(sim(net,Ptest));

 out = [out; a];

 testing = sum(round(cell2mat(a)) - Ttest);

 if testing>0 | testing<0

 testmissed(j) = testmissed(j) + 1;

 end

 end

end

% Return the average values for MSE, training error, and testing error

aveMSE = mean(msee)

aveTrainErr = mean(trainmissed)

aveTestErr = mean(testmissed)

Appendix E - References
[1]
J. A. Markowitz. Using Speech Recognition. New Jersey: Prentice Hall, 1996.

[2]
L. E. Kinsler, et al. Fundamentals of Acoustics Fourth Edition. New York: John Wiley & Sons, Inc., 2000.

[3]
M. Towsey, et al. “Natural language learning by recurrent neural networks: a comparison with probabilistic approaches” Proc. Joint Conf. on New Methods in Language Processing and Computational Natural Language Learning, pages 3--10, 1998. <http://citeseer.nj.nec.com/towsey98natural.html>
[4]
R. Nave. HyperPhysics. Department of Physics and Astronomy, Georgia State University, 2003. <http://hyperphysics.phy-astr.gsu.edu/hbase/music/voicecon.html>

[5]
S. Molau, et al. "Computing MelFrequency Cepstral Coefficients on the Power Spectrum" Proc. Int. Conf. on Acoustic, Speech and Signal Processing, Salt Lake City, UT, June 2001, to appear. <http://citeseer.nj.nec.com/molau01computing.html>

Logarithm

MFCC

DCT

Speech Waveform

Windowing

Mel Filter Bank

|FFT|2

1

6

2

4

5

3

1

2

3

4

6

5

7

1

2

4

3

5

6

1

2

3

4

5

6

7

% mfcc.m

% Written by Eric Nutt, December 15, 2003

% Function C = mfcc(X,fscale,nmfcc)

% Purpose: Compute the first nmfcc Mel-Frequency Cepstral Coefficients of a

% Power spectrum X

% Inputs: X - The power spectrum to transform

% fscale - The frequency scale corresponding to the discrete values of

%		 the spectrum X

% nmfcc - The number of Mel-Frequency Cepstral Coefficients to

% return

function C = mfcc(X,fscale,nmfcc)

% If the filter bank is not loaded then load it

if isvarname('fBank') | isvarname('linpeaksind')

 load 'melFilter40x256.mat';

end

% Filter the spectrum

for i = 2:size(linpeaksind,2)-1

 prev_ind = linpeaksind(i-1); % The previous spectrum index

 ind = linpeaksind(i); % The current spectrum index

 next_ind = linpeaksind(i+1); % The next spectrum index

 % The current spectrum values

 currSpec = X(linpeaksind(i-1):linpeaksind(i+1),1);

 % Multiply the precomputed filter by the spectrum and sum up the components

 filteredX(i-1) = sum(fBank{i-1}*currSpec);

end

% Take the Discrete Cosine Transform and return the first nmfcc

% coefficients

C = dct(filteredX);

C = C(1:nmfcc)';

% Done

% melFilterBank.m

% Written by Eric Nutt, December 15, 2003

% Function [fBank,linpeaksind]=melFilterBank(nfilt,nsamples,minfreq,maxfreq,save_bool)

%	Purpose: Create a Mel-Frequency filter bank for use in computing the MFCCs of a

%		 power spectrum

%	Inputs:	nfilt – The number of filters in the filter bank

%		nsamples – The number of samples in the spectrum to be filtered

%		minfreq/maxfreq – The min and max freq in the spectrum to be filtered

%		save_bool – ‘1’ to save the filter bank to a file, ‘0’ to not save it

%	Outpus:	fBank – A cell array containing each of the filters in the filter bank

%		linpeaksind – A 1 by nfilt matrix containing the peaks of each filter

function [fBank,linpeaksind] = melFilterBank(nfilt,nsamples,minfreq,maxfreq,save_bool)

% Mel to Freq and Freq to Mel Conversion functions

freq2mel = inline('2595.*log10(1+(f./700))','f');

mel2freq = inline('700.*(10.^(m./2595) - 1)','m');

% Convert the min and max freq to the mel-frequency scale

maxm = freq2mel(maxfreq);

minm = freq2mel(minfreq);

% get linearly spaced filter peaks in mel-scale – then convert to frequency scale

melpeaks = minm:(maxm-minm)/(nfilt + 1):maxm;

linpeaks = mel2freq(melpeaks); % peaks of the frequency-scale band filters

% Scale frequency peaks to represent the X signal's index values

linpeaksind = fix(linpeaks.*(nsamples./maxfreq))+1;

if linpeaksind(nfilt+2) > nsamples

 linpeaksind(nfilt+2)=nsamples

end

% Make the filters

for i = 2:size(linpeaksind,2)-1

 prev_ind = linpeaksind(i-1);

 ind = linpeaksind(i);

 next_ind = linpeaksind(i+1);

 % Create the traingular filter shape

 bmax = 1;

 bmin = 0.05;

 bup = [bmin:(bmax-bmin)/(ind-prev_ind):bmax];

 bdwn = [bmax:-((bmax-bmin)/(next_ind-ind)):bmin];

 b = [bup(1:size(bup,2)-1) 1 bdwn(2:size(bdwn,2))]; % The final traingle filter

 fBank{i-1} = b;

end

% Save the filter bank if wanted

if save_bool

 eval(['save(''melFilter' num2str(nfilt) 'x' num2str(nsamples) '.mat'',''fBank'',''linpeaksind'');']);

end

PAGE
1

_1133092429.unknown

_1133093553.unknown

_1133093564.unknown

_1133093420.unknown

_1133092574.unknown

_1133085144.unknown

_1133085154.unknown

_1132403043.unknown

_1133018595.unknown

_1133085088.unknown

_1133011239.unknown

_1132402615.unknown

